文章编号: 0253-2239(2010)s100508

激光二极管侧面抽运的声光调 Q Nd: YAG 动态 基横模激光器

肖崇溧1 万春明1 马建立1 秦志楠1 张志伟2

(1长春理工大学理学院,吉林长春130022;2长春工业大学,吉林长春130022)

摘要 谐振腔内的光束纵向分布容易随着晶体的热透镜焦距的变化而改变,所以目前采用 LD 侧面抽运的固体激 光器通常只能在特定抽运功率下才能实现基模输出。研究了用腔内带热透镜的谐振腔模型,结合基横模运转的产 生条件,通过计算基模在晶体处光斑与热透镜焦距的关系,设计了能够实现动态基横模运转的谐振腔型。在重复 频率为 10 kHz 的调 Q运转下,得到平均功率从阈值到 17.7 W 的动态基横模输出,且 M²_x = 1.29, M²_y = 1.20, 脉冲 宽度为 200 ns,峰值功率为 7.65 kW。

关键词 激光技术;二极管侧面抽运;动态基横模;声光调 Q 中图分类号 TN248.1 **文献标识码** A **doi**: 10.3788/AOS201030.s100508

Laser Diode-Side-Pumped Acoustic-Optically Q-Switched Nd: YAG Laser with Dynamic Fundamental Mode

Xiao Congli¹ Wan Chunming¹ Ma Jianli¹ Qin Zhinan¹ Zhang Zhiwei²

¹ School of Sciences, Changchun University of Science and Technology, Changchun, Jilin 130022, China ² Changchun University of Technology, Changchun, Jilin 130022, China

Abstract The longitudinal distributions of beam in resonators always change with the focal length of thermal lens. Therefore, most of fundamental mode laser output from laser diode-side-pumped modules are usually obtained at given pump powers. The resonator model with thermal lens and the condition for fundamental mode operation are studied. The relation between the fundamental-mode spot at crystal and the focus of thermal lens is calculated, and the resonator is designed for dynamic fundamental-mode operation. At repletion rate of 10 kHz, the laser operates with dynamic fundamental mode and the average power can be obtained from threshold to 17.7 W, $M_x^2 = 1.29$ and $M_y^2 = 1.20$. Pulse duration is measured to be 200 ns and the peak power is 7.65 kW.

Key words laser technique; laser diode-side-pumped; dynamic fundamental mode; acousto-optical *Q*-switching **OCIS codes** 140.3480; 140.3540

1 引

激光二极管抽运脉冲固体激光器具有效率高、 体积小、寿命长和结构紧凑等优点,在激光测量、全 息、打标和材料加工领域均有广泛应用^[1]。在军事 方面更是首选的激光光源,在激光探测、激光制导及 激光侦察方面也有广阔的应用潜力^[2]。在这些应用 中脉冲激光需要有宽阔的功率调节范围和接近衍射 极限的光束质量^[3]。 由于端面抽运方式在晶体内的增益均匀,抽运 光功率密度大,常常被低功率激光器和短脉冲激光 器所采用^[4,5]。而由于受抽运光吸收饱和与热效应 的限制,端面抽运方式很难实现较高功率的激光输 出。文献[6]报导了用两个扩散抽运的激光头模块 串联,腔内插入两个望远镜系统,得到 37 W 基横模 被动调 Q 激光。扩散抽运的激光模块可以使激光 晶体内的抽运光吸收均匀,因而可实现晶体内均匀

言

收稿日期: 2010-06-05; 收到修改稿日期: 2010-07-02

作者简介:肖崇溧(1982—),女,博士研究生,主要从事激光器方面的研究。E-mail: xiaocl@mail.jlste.com.cn

导师简介:万春明(1959—),男,博士研究生,教授,博士生导师,主要从事激光器方面的研究。

E-mail: wcm@cust.deu.cn(通信联系人)

30 卷

的增益和热应力,但是其结构复杂,且国内无产品。 本文对谐振腔的设计进行了研究,采用国产的二极 管侧面直接抽运模块,实现了大干17.7 W的调Q 动态基横模激光输出。

2 动态热稳腔的设计

Driedger 等^[7]指出实现基模输出的条件是腔内 激光棒处的基模光斑半径约等于激光棒半径,因为 激光棒作为通光孔,使基模光通过并得到增益,而高 阶模不能通过(高损耗);所以如果激光棒处基模光 斑半径小于激光棒半径,就会激发高阶模。文献[6] 报导的腔内插入望远镜系统,是为增大基模体积,使 基模光斑与激光棒相匹配。然而对于所使用的侧面 直接抽运激光模块,是用激光二极管从激光棒的3 个侧面抽运,如图1所示,激光棒直径为3mm,内 部增益呈现三角形分布。不均匀的抽运导致了激光 棒内不均匀增益和不均匀的热应力,不均匀的热应 力就会导致激光棒内折射率不均匀,当激光通过晶 体时会导致波前畸变。这些都是热效应影响光束质 量的重要原因。为提高光束质量,基模光斑必须在 晶体中增益较为均匀的部分中,而基模以外需要增 大高阶模的损耗。

图 1 晶体棒内荧光分布 Fig. 1 Fluorescence distribution in laser rod

在分析谐振腔时,由于我们所使用的晶体长度 为70 mm,如果当做薄透镜处理必然会带来一些误 差。根据 Vittorio Magni 给出的模型,如图 2(a)中 的晶体可以等效成图 2(b) 所示的一个薄透镜和两 段长为h的距离, $h = \frac{l}{2n}$,l为晶体长度,n为晶体折 射率;进而可以等效成图 2(c)所示更简化的模型, 晶体完全等效成一个薄透镜, 而把 h 加到腔长中 夫[8]。

- 图 2 (a) 腔内有带热透镜效应的晶体, (b) 晶体等效成一 个薄透镜和两段晶体,(c)腔内晶体等效成薄透镜 的模型
- Fig. 2 (a) Intracavity crystal with thermal lens effect, (b) crystal is equivalent to a thin lens and two crystals, (c) the model that intracavity crystal is equivalent to thin lens

根据厚透镜在腔内等效的简化模型和谐振腔理 论中的 abcd 矩阵,可以计算出在热透镜处的晶体基 模光斑半径。

以晶体热透镜处为起始点的 abcd 矩阵计算如下:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & L_1 + \frac{l}{2n} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -\frac{2}{R_1} & 1 \end{bmatrix} \begin{bmatrix} 1 & L_1 + \frac{l}{2n} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{bmatrix} \begin{bmatrix} 1 & L_2 + \frac{l}{2n} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -\frac{2}{R_2} & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{bmatrix} \begin{pmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{bmatrix},$$
(1)

激光晶体处的基模光斑半径

$$\omega_{\rm rod} = \sqrt{\frac{\lambda}{\pi} |b| \left[1 - \left(\frac{a+d}{2}\right)^2\right]^{-1/2}}, \qquad (2)$$

从上式可见,对于一个给定的腔型, R_1 , R_2 , L_1 , L_2 ,

l,n都是常量,但f是个变量。所以谐振腔内基模激 光光斑在晶体处光斑半径会随 f 发生变化。并且根 据文献[8]报导,谐振腔会随热焦距的变化呈现出两 个稳区。如果基模在晶体处的光斑半径大于激光棒

半径,则谐振腔成为非稳腔;如果晶体处光斑半径比 激光棒半径小很多,则高阶模就会起振;只有基模光 斑半径与激光棒半径接近时,激光器才会在基模下 运转。

经过实验测试得知,从阈值抽运功率到最大抽运功率,激光棒的热焦距从 1.3 m 缩短到 0.7 m。 当选择谐振腔参数 $R_1 = 0.8$ m, $R_2 = \infty$, $L_1 = 1.4$ m, $L_2 = 1$ m 时,得到的晶体处基模光斑半径随 热焦距变化曲线,如图 3 所示。

Fig. 3 Curve of fundamental mode spot radius at laser rod with thermal lens focual length

从图 3 可见,在激光棒处的基模光斑随热透镜 焦距变化很平缓($\omega_{rod} \approx 1 \text{ mm}$),并且两个稳定区在 f=0.6附近几乎连成一个稳定区。

文献[9]介绍为提高光束质量,可在腔内加聚焦

透镜,根据聚焦的发散角在聚焦的腰斑处放置一个 以基模腰斑为半径的小孔。而由于晶体的热焦距随 着抽运功率的变化而变化,所以光束腰斑位置也会 随着抽运功率而发生变化,因此用此种方法只能在 特定抽运功率下使用,而不能实现动态基模输出。 由于图1中所示激光棒在直径大约2mm内是均匀 的,上述已算得在热焦距变化的过程中,激光棒处基 模光斑半径一直在1mm附近,所以把 Φ2mm的小 孔放置在激光棒处,这样光既不经过不均匀增益区, 又抑制了高阶模起振,并且在这个腔型下,光斑大小 对抽运功率不敏感。

3 实验装置及实验结果

根据上面的计算,设计如图 4 所示的实验装置。 激光模块是国产三维直接抽运 Nd:YAG 晶体的激 光模块; M₁ 是曲率半径为 800 mm 的凹面镜,镀 1064 nm 高反膜; M₂ 是镀反射率为 80%的平面镜; 激光晶体处放置一个直径为 2 mm 的小孔,与激光 晶体同轴; 声光 Q 开关是电子集团第二十六所生产 的 QSGSU-5 型 声光调制器, 声光器件两端镀 1064 nm增透膜,靠近激光模块放置; 功率测量采用 OPHIR 公司生产的量程为 150 W 功率计; 光束质 量测量采用 Spiricon 公司生产的 M²-200 型光束质 量分析仪;采用泰克公司生产的 1 G 示波器和一个 光电探头测试激光波形。

图 4 实验装置示意图 Fig. 4 Scheme of experimental device

在 10 kHz 调 Q 重复频率下,得到激光输出功 率和光束质量因子 M² 随抽运功率的变化曲线如图 5 所示。可见抽运功率增加的过程中,激光输出功 率逐步均匀增加,而 M² 基本不随抽运功率的变化 而改变。当输入最大抽运光功率 110 W 时,得到最 大输出功率为 17.7 W,且 $M_x^2 = 1.29$, $M_y^2 = 1.20$, 激 光远场光斑能量分布和纵向双曲线分布如图 6 所 示。调 Q 激光脉冲波形如图 7 所示,宽度为200 ns, 尖峰功率 7.65 kW。

Fig. 5 Curve of laser power and beam quality factor M^2 with pump power

图 6 激光输出 17.8 W 时远场光斑和双曲线 Fig. 6 Far-field spot and hyperbola at output power 17.8 W

图 7 脉冲波形 Fig.7 Pulse waveform

4 结 论

研究了带晶体热透镜效应的谐振腔等效模型, 结合基模激光运转的条件,设计了腔内晶体处基模 光斑半径随晶体热透镜焦距变化缓慢的腔型。在晶 体处加接近基模光斑半径的小孔,既可减小晶体边 缘处增益分布不均匀的影响,也可抑制高阶模的振 荡。这样得到了从阈值到最大抽运功率的动态基模 输出,在重复频率为10 kHz 的调 Q 运转下,最大输 出功率为 17.7 W,脉冲宽度 200 ns,峰值功率 7.65 kW。

参考文献

- Wang Chunyu, Li Xiaoli, Zang Huaguo *et al.*. Laser diode continuous-wave-pumped repetitive electro-optic Q-switched Nd: YVO₄ laser[J]. *Chinese J. Lasers*, 2006, **33**(11): 1441~1446 王春雨,李小莉, 減华国等. 激光二极管连续抽运电光调QNd: YVO₄激光器[J]. 中国激光, 2006, **33**(11): 1441~1446
- 2 Wang Hui, Wang Xinyuan, Pu Xiangdong *et al.*. Detection technology of high frequency noise in *Q*-switched diode-pumped laser[J]. J. Appl. Opt., 2008, 29(1): 72~75
 王 晖, 王欣媛, 蒲祥东等. 调 Q 二极管抽运固体激光器激光
- 脉冲高频噪声的检测[J]. 应用光学, 2008, 29(1): 72~75
- 3 L. McDonagh, R. Wallenstein. 47 W, 6 ns constant pulse duration, high-repetition-rate cavity-dumped Q-switched TEM₀₀ Nd: YVO₄ oscillator[J]. Opt. Lett., 2006, **31**(22): 3303~3305
- 4 Zhao Hong, Zhang Dayong, Jiang Dongsheng *et al.*. Study on LD end-pumped and passive *Q*-switched laser technology with high beam quatity [J]. *Laser & Iinfrared*, 2004, **31** (22): 3303~3305

赵 鸿,张大勇,姜东升等.LD 抽运高光束质量被动 Q 开关激 光技术研究[J]. 激光与红外,2004,34(1):27~29

- 5 Y. Wang, M. Gong, H. Zhang. 2 ns pulse width high repetition rate short cavity acousto-optically Q-switched Nd: YVO₄ laser [J]. *Electron. Lett.*, 2007, **43**(7): 394~396
- 6 Hongru Yang. 41 W cw TEM₀₀ (M² = 1. 2) 1064 nm beam generation from diode-side-pumped Nd: YAG laser by use of a dual-telescopic optics configuration [J]. Opt. Commun., 2002, 204: 263~266
- 7 K. P. Driedger, R. M. Ifflander, H. Weber. Multirod resonators for high-power solid-state lasers with improved beam quality[J]. *IEEE J. Quant. Electron.*, 1988, **24**(4): 665~674
- 8 V. Magni. Resonators for solid-state lasers with large-volume fundamental mode and high alignment stability[J]. Appl. Opt., 1986, 25(1): 107~117
- 9 Lan Xinju. Laser Technology [M]. Wuhan: Pulishing Company of Huazhong University of Sceince and Technology Press Co., Ltd., 1995

蓝信钜. 激光技术 [M]. 武汉: 华中科技大学出版社有限公司, 1995